Titen HD® Rod Hanger Design Information — Concrete

Titen HD® Threaded Rod Hanger Product Data

	Size (in.)	Model	Accepts Rod Dia.	Drill Bit Dia. (in.)	Wrench Size	Min. Embed.	Quantity	
		No.	(in.)		(in.)	(in.)	Вох	Carton
	1/4 x 1 1/2	THD25112RH	1/4	1/4	3/8	1 ½	100	500
	3/8 x 2 1/8	THD37218RH	3/8	1/4	1/2	21/8	50	250
١	3/8 X 21/2	THD37212RH	3/8	3/8	1/2	21/2	50	200
	½ x 2¾	THD50234RH	1/2	3/8	11/16	23/4	50	100

Titen HD® Threaded Rod Hanger Installation Information and Additional Data¹

Characteristic	Symbol	Symbol Units		Model Number		
Gnaracteristic	Symbol		THD37212RH	THD50234RH		
	Installation Info	ormation				
Rod Hanger Diameter	do	in.	in. 3/8			
Drill Bit Diameter	d _{bit}	in.	3/8	3/8		
Maximum Installation Torque ²	T _{inst,max}	ftlb.	50	50		
Maximum Impact Wrench Torque Rating ³	T _{impact,max}	ftlb.	150	150		
Minimum Hole Depth	h _{hole}	in.	3	31/4		
Embedment Depth	h _{nom}	in.	21/2	23/4		
Effective Embedment Depth	h _{ef}	in.	1.77	1.77		
Critical Edge Distance	C _{ac}	in.	211/16	211/16		
Minimum Edge Distance	C _{min}	in.	1¾			
Minimum Spacing	S _{min}	in.	3			
Minimum Concrete Thickness	h _{min}	in.	41/4	41/4		
	Anchor D	ata				
Yield Strength	f _{ya}	psi	97,	000		
Tensile Strength	f _{uta}	psi	110,000			
Minimum Tensile and Shear Stress Area	A_{Se}	in.²	0.099	0.099		
Axial Stiffness in Service Load Range – Uncracked Concrete	eta_{uncr}	lb./in.	715,000			
Axial Stiffness in Service Load Range – Cracked Concrete	eta_{cr}	lb./in.	345,000			

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

 $^{2.}T_{\mathit{inst,max}}$ is the maximum permitted installation torque for installations using a torque wrench.

^{3.} T_{impact,max} is the maximum permitted torque rating for impact wrenches.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Rod Hanger Design Information — Concrete

Titen HD® Threaded Rod Hanger Tension Strength Design Data for Installations in Concrete^{1,6}

	*
LIMI	
LVV	

Characteristic	Symbol	Units	Model Number					
GHAFACTERISTIC	Symbol		THD37212RH	THD50234RH				
Anchor Category	1, 2 or 3	_	1					
Embedment Depth	h _{nom}	in.	21/2	2¾				
Steel Strength in Tension (ACI 318 Section D.5.1)								
Tension Resistance of Steel	N _{sa}	<i>N_{sa}</i> lb. 10		10,890				
Strength Reduction Factor – Steel Failure ²	$\phi_{_{SA}}$	_	0.0	65				
Concrete Breakout Strength in Tension (ACI 318 Section D.5.2) ⁶								
Effective Embedment Depth	h _{ef}	in.	1.77	1.77				
Critical Edge Distance	c_{ac}	in.	211/16	211/16				
Effectiveness Factor – Uncracked Concrete	Kuncr	<u> </u>	24					
Effectiveness Factor – Cracked Concrete	k _{cr}		17					
Modification Factor	$\psi_{c,N}$	_	1.0					
Strength Reduction Factor – Concrete Breakout Failure ⁵	ϕ_{cb}	_	0.65					
Pullout S	trength in Tension (ACI 3	318 Section D.5.3) ⁶						
Pullout Resistance – Uncracked Concrete $(f'_c = 2,500 \text{ psi})$	N _{p,uncr}	lb.	2,025³	2,025³				
Pullout Resistance — Cracked Concrete $(f'_c = 2,500 \text{ psi})$	N _{p,cr}	lb.	1,235³	1,235³				
Strength Reduction Factor – Pullout Failure ⁴	$\phi_{ ho}$	_	0.65					
Tension Strength for Seismic Applications (ACI 318 Section D.3.3) ⁶								
Nominal Pullout Strength for Seismic Loads (f' $_c$ = 2,500 psi)	$N_{p,eq}$	lb.	1,235 ³	1,235³				
Strength Reduction Factor – Pullout Failure ⁴	ϕ_{eq}	_	0.6	65				

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ. Anchors are considered brittle steel elements.
- Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f⁺_{c,specified}/2,500)^{0.5}.
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 5. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 6. For sand-lightweight concrete, the modification factor for concrete breakout strength must be taken as 0.6. Additionally, the pullout strength $N_{p,uncr}$, $N_{p,cr}$ and $N_{p,eq}$ must be multiplied by 0.6, as applicable.
- 7. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength, $N_{p,cr}$, $N_{p,uncr}$ and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

Titen HD® Threaded Rod Hanger Tension Strength Design Data for Installations in the Lower and Upper Flute of Normal-Weight or Sand-Lightweight Concrete Through Metal Deck^{1,2,5,6}

IBC	1	
	250 250	1 - 1

Characteristic	Symbol Units		Model No.		
Gilai actei istic	Syllibol	Ullits	THD37212RH	THD50234RH	
Minimum Hole Depth	h _{hole}	in.	3	31/4	
Embedment Depth	h _{nom}	in.	21/2	23/4	
Effective Embedment Depth	h _{ef}	in.	1.77	1.77	
Pullout Resistance – Cracked Concrete ^{2,3,4}	N _{p,deck,cr}	lbf.	870	870	
Pullout Resistance – Uncracked Concrete ^{2,3,4}	N _{p,deck,uncr}	lbf.	1,430	1,430	

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{c,specified}/3,000 psi)^{0.5}.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure 1, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight-concrete-over-metal-deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}.
- 5. Minimum distance to edge of panel is 2hef.
- 6. The minimum anchor spacing along the flute must be the greater of $3h_{ef}$ or 1.5 times the flute width.

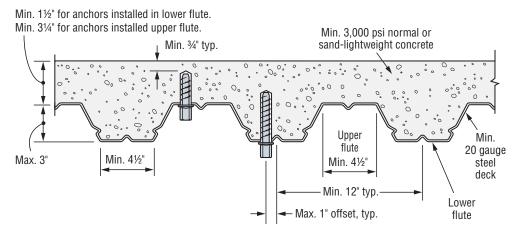


Figure 1. Installation in Concrete Over Metal Deck

Titen HD® Threaded Rod Hanger Allowable Tension Loads in Normal-Weight Concrete

						Tension Load				
Model Number	Rod Hanger Dia. (in.)	Drill Bit Dia. (in.)	Emb. Depth (in.)	Critical Edge Distance (in.)	Critical Spacing Distance (in.)	f' _c ≥ 2,000 psi Concrete		f' _c ≥ 4,000 psi Concrete		
						Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	
THD25112RH	1/4	1/4	1½	3	6	1,319	330	2,102	525	
THD37218RH	3/8	1/4	21/8	3	6	2,210	555	3,227	805	
THD37212RH	3/8	3/8	2½	3	6	3,650	915	5,275	1,320	
THD50234RH	1/2	3/8	2¾	3	6	4,297	1,075	6,204	1,550	

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 198 and 199.
- 4. The minimum concrete thickness is 11/2 times the embedment depth.
- 5. Allowable load may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

^{*} See page 12 for an explanation of the load table icons.