Titen® 2 Concrete and Masonry Screw

Titen 2 Installation Information and Additional Data¹

Characteristic	Sumbol	Unito	Nominal Anchor Diameter (in.)				
Gildideteristic	Symbol	Units	3⁄16	1⁄4			
Installation Information							
Drill Bit Diameter	d	in.	5/32	3⁄16			
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1⁄4	5⁄16			
Minimum Hole Depth	h _{hole}	in.	21⁄4	21⁄4			
Embedment Depth	h _{nom}	in.	1 3⁄4	1 3⁄4			
Effective Embedment Depth	h _{ef}	in.	1.30	1.30			
Critical Edge Distance	C _{ac}	in.	3	3			
Minimum Edge Distance	C _{min}	in.	1 3⁄4	1 3⁄4			
Minimum Spacing	s _{min}	s _{min} in.		2			
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄4			
Additional Data							
Yield Strength	f _{ya}	psi	100,000				
Tensile Strength	f _{uta}	psi	125,000				
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.017	0.025			

1. The information presented in this table is to be used in conjunction with the design criteria of

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Titen 2 Tension Strength Design Data¹

Chovestovistic	Cumbol	Unito	Nominal Anchor Diameter (in.)				
Characteristic	Symbol	Units	³ ⁄16	1⁄4			
Anchor Category	1, 2 or 3	—		1			
Embedment Depth	h _{nom}	in.	1¾	1 3⁄4			
Steel	Strength in Tension	ı					
Tension Resistance of Steel	N _{sa}	lb.	2,175	3,175			
Strength Reduction Factor — Steel Failure	ϕ_{sa}	—	0.652				
Concrete Breakout Strength in Tension ⁶							
Effective Embedment Depth	h _{ef}	in.	1.30	1.30			
Critical Edge Distance	C _{ac}	in.	3	3			
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_	24				
Modification Factor	$\Psi_{C,N}$		1.0				
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	—	0.65 ³				
Pullout Strength in Tension ⁶							
Pullout Resistance Uncracked Concrete ($f'_c = 2,500 \text{ psi}$) ⁴	N _{p,uncr}	lb.	1,900	1,900			
Strength Reduction Factor — Pullout Failure	ϕ_p		0.655				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factor described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3, as applicable, for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

4. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by $(f_c/2,500)^{0.5}$.

5. The tabulated value of ϕ_p applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

IBC

LW

Titen® 2 Concrete and Masonry Screw

SIMPSOI

rong

IBC

Titen 2 Shear Strength Design Data¹

Charactoristic	Symbol	Unite	Nominal Anchor Diameter (in.)			
	Symbol	UTIITS	³ ⁄16	1⁄4		
Anchor Category	1, 2 or 3	—	1			
Embedment Depth	h _{nom}	in.	13⁄4 13⁄4			
Steel Strength in Shear						
Shear Resistance of Steel	V _{sa}	lb.	990	1,510		
Strength Reduction Factor — Steel Failure	ϕ_{sa}	—	0.602			
Concrete Breakout Strength in Shear ⁴						
Outside Diameter	da	in.	0.149	0.180		
Load Bearing Length of Anchor in Shear	l _e	in.	1.30	1.30		
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.703			
Concrete Pryout Strength in Shear						
Coefficient for Pryout Strength	k _{cp}	—	1.0			
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	—	0.704			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).

4. The tabulated value of φ_{cp} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of φ_{cp} must be determined in accordance with ACI 318-11 Section D.4.4(c).

Allowable Tension Installed in Grou					
Anchor	Embedment				
Diameter (in.)	Depth (in.)	Spacing (in.)	Edge (in.)	End (in.)	(lb.)
3⁄16	2	3	37⁄8	31⁄8	346
3⁄16	2	3	1 1⁄2	31⁄8	315
1⁄4	2	4	37⁄8	31⁄8	277
1⁄4	2	4	1 1/2	37⁄8	272

1. The tabulated values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum of f'm of 1,500 psi at time of installation.

31/8

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen 2 Screw Anchor Installed in Grouted CMU Wall Faces^{1,2,3}

CM	U Wall Fa					
nt	Minimum Dimensions					
	Spacing (in.)	Edge (in.)	End (in.)	Direction of Loading	(lb.)	
	3	37⁄8	37⁄8	Toward edge, parallel to wall end	224	
	3	1 1⁄2	37⁄8	Toward wall end, parallel to wall edge	238	

Toward edge, parallel to wall end

309

277

 1/4
 2
 4
 1 1/2
 37/8
 Toward wall end, parallel to wall edge

 1. The tabulated values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

31/8

having reached a minimum of f'_m of 1,500 psi at time of installation.

4

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Embedme

Depth

(in.) 2

2

2

Anchor

Diameter

(in.)

3⁄16

³⁄16

Titen® 2 Concrete and Masonry Screw

Allowable Tension Load for Titen 2 Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

IBC

IBC

Anchor	Embedment	Mi	Minimum Dimensions		
Diameter Depth (in.) (in.)	Spacing (in.)	Edge (in.)	End (in.)	Load (lb.)	
3⁄16	1 1⁄4	3	37⁄8	37⁄8	151
1⁄4	1 1⁄4	4	31%8	31⁄8	153

1. The tabulated values are for screw anchors installed in minimum 8"-wide ungrouted concrete masonry walls having reached a minimum of f'm of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor. 3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen 2 Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor	Embedment	Minimum Dimensions			Direction of Allowable	
Diameter (in.)	Depth (in.)	Spacing (in.)	Edge (in.)	End (in.)	Loading	Load (lb.)
3⁄16	1 1⁄4	3	37⁄8	37⁄8	Toward edge, parallel to wall end	168
1⁄4	1 1⁄4	4	37⁄8	37⁄8	Toward edge, parallel to wall end	163

1. The tabulated values are for screw anchors installed in minimum 8"-wide ungrouted concrete

masonry walls having reached a minimum of f'_m of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor. 3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

SIMPS

Strong